当前位置: 吃瓜网 » 花卉知识 » 正文内容

要命的小东西咬的真紧|放在里面边顶边吃饭H

时间:2022年04月28日 8:26:38来源:吃瓜网 作者:佚名浏览:(8)次
[导读]   “我研究的方向主要是随机偏微分方程理论,不过近两年来,我受邀协助祖国修订中学生的教材,我曾试图找到一种全新的思维方式,它能帮忙中学生更好地理解数学、学习数学……”    马丁教授的话同样只...

  “我研究的方向主要是随机偏微分方程理论,不过近两年来,我受邀协助祖国修订中学生的教材,我曾试图找到一种全新的思维方式,它能帮忙中学生更好地理解数学、学习数学……”

    马丁教授的话同样只有三分钟左右,但给秦克极大的触动,因为这与他最近所思所想不谋而合,也给了他一定的启发。

    因为这两天来他闲下来一直在钻研s级知识《非线性偏微分方程‘纳维-斯托克斯方程’的探究与详解(前篇)、(中篇)》,每看一篇,心里就有新的体会与感悟。

    最大的感悟就是思维方式的变化,“前篇”“中篇”之所以复杂难懂,除了很多理论非常深奥、需要极高的数学等级、物理等级外,也是因为它的层次站得非常高,它的思维模式并不局限于某一学科某一个方向,而是直接从理论科学与实用科学相结合的更高层次,统筹融合这些学科知识,  将理论转化为实践。

    秦克再次审视自己的“理论成果”,无论是写过的几篇论文,还是他和宁青筠编写的那套《小猫柠檬与小狗克克的奇妙数学之旅(初一篇)》,以及给宁青筠特训、给奥数集训队上课时所阐述的“奥数新体系知识体系”,最大的亮点其实就在于,思维方式比知识点的层次更高,才使得他的理论成果更显得高效、化难为易。

    那自己那套奥数理论体系,能不能再优化再提升呢?

    答案是肯定的,那就是从思维方式上进行革新,以更高的视野来统合奥数知识,将之形成一套全新的、更科学、更有简洁的理论。

    不过秦克目前的奥数水平已达到了世界所有高中生所能达到的巅峰,换而言之,也是到了一个瓶颈期,想有寸步谈何容易?

    直到开幕式结束,秦克还沉浸在这样的思考中,却一时间没什么灵感与突破,只得暂且放弃,打算赛后再研究。

    通过安检和证件检验后,在考场门口与宁青筠、王昌艾等四个队员逐一击掌后,秦克步入了自己的考室

 文学

    每届imo的考场布置由举办地点负责,这届自然是奥斯陆大学来安排。秦克的运气不错,  居然被安排到一个环境古朴典雅的礼堂里考试。

    礼堂极大,  能坐近两百个考生,  秦克很快就找到了自己的座位,上面已备上了一小包饼干、一块巧克力和一小瓶矿泉水,量都不大,是举办方为了考生们在长达五小时的考试中临时补充养分,又不用频繁跑卫生间而准备的。

    四周的考生有些很新鲜地翻看着这些饼干巧克力,一看就是初次参赛的萌新;也有些无动于衷,淡定地翻看着携带的参考资料,应该是去年参加过赛事的老鸟。

    据邓弘国说,这届米国队里的那个叫希尔的亚裔,是前年的金牌、去年的冠军,因为去年时他在最后一道大题采用了两种不同、极有创意的新方法解出来,受到了评委组的一致认可,特意将他划定为冠军。

    邓弘国将之视为秦克和宁青筠的劲敌。

    巧合的是,秦克一眼就认出了这个希尔,就坐在他前面三排的位置。

    希尔这时正以极精妙的动作转动着手里的笔,神色也很轻松,甚至带着微笑。

    反正光看他那转笔的灵活动作就让人惊叹,精密有如机械,接连来回转了上百下,速度快得惊人,却始终没失手过,看他的状态,只要他不想停下来,就能永远转下去般。

    光看这对自己手指的精准控制,就能知道他大脑对于精细动作的控制有多高超,这样的人智商定然也是超一流的。

    另一个引起秦克注意的是个熊国的高个子,湛蓝的眼睛,皮肤很白,与希尔的动不同,他是另一个静的极端。

    他安安静静地坐原地,静得像就块石头,看不出一丝的紧张与忐忑,也没表现出半分的无聊,似乎放空自己,也似乎在冥想。

    不愧是imo,世界各国的奥数强者云集的最高端赛事,也让秦克居然燃起了几分战意。

    十几分钟后,day1的比赛即将开始,试卷是提前了五分钟下发的,为的是让考生们提前阅卷,看看有没有什么错漏之处,所以只能看不能动笔。

    秦克利用三分钟就看完了卷子,题目确实比较难,如果只是常规的解法,秦克有信心在35分钟内完成,但如果采用有新意的解法,就需要进一步的思考,大概得50分钟左右了。

    要不干脆用三种解法,完成整份卷子?

    秦克决定给自己一个新的挑战。

    一来会让这次的imo更加有趣点,二来也确保将这届的冠军揽入怀中。

    ——imo向来是鼓励一道用多种解法的,因为它一直都提倡“创造性”,只是绝大多数的考生想在规定时间内完成整个卷子都难逾登天,只有极个别的天才,如同去年米国队的希尔,才能游刃有余地在某道大题上琢磨出两种全新的解法。

    趁着未正式开考前,秦克举起了写有“help”的牌子,马上有个年轻的棕发监考老师过来用英语问:“请问这位同学,有什么需要?”

    秦克轻声道:“能不能再给我两张答题纸?”

    监考老师愕然道:“你手里的答题纸有问题吗?”

    “不是,我怕它写不下我的答案。”

    因为这届imo的题目多了两道,组委会特意准备了较大的答题纸,对折起来可以写四面,正常来说怎么都够用了,没想到居然还有学生早早就提要出增加答题纸,而且是一次要两张。

    监考老师还是第一次遇到这样的情况,他拿不定主意,跑去问考场上的监考组长,监考组长意外地看了眼秦克桌子上插着的国旗,这个学生是夏国的选手?夏国以前还算是一流的强队,可惜了,近十年来不断走下坡路,现在都要沦为三流弱队了。

    他摇头道:“古老的国家就是喜欢这样故弄玄虚,拿给他吧。”

    监考老师得到了指示,很快就给秦克取来了两张答题纸。

    这里发生的小事基本上没多少人在意,人人都在抓紧时间审题,哪怕不能动笔,也要先寻找破解的思路。

    这时开考的悠扬钟声响起,考场里只有近五分之一的考生开始拿起笔,杀向第一道门槛题。

    米国队的希尔和熊国的冥想考生自然也是其中之一,两人都不慌不忙地拿起笔做题。

    余下的考生都满脸苦涩,有些急得不断搔脑袋,显然被开头的第一道门槛题就难住了。

    其实按照惯例,day1的题目会比day2容易,而第一题又是day1所有的题目里最容易的,但这届imo的难度提升了不少,对思维的灵活性提出了更高的要求,题目的难度也是随机分布的,很不巧,这道门槛题是属于整份卷子里比较难的,于是便难住了五分之四的人。

    “1、n为给定正整数,s={(x,y,z)|x,y,z  ∈{0,1,2,…,n},x+y+z>0}是三维空间中(n+1)^3-1个点的集合。试求其并集包含s但不含(0,0,0)的平面个数的最小值。”

    秦克也没有动笔,这题对于他来说并不难,他只花了五秒钟,就想出了一种解法,以及两种微创新的解法。

    但就在他拿起笔准备写答案之时,脑海里灵活一闪而过。

    灵感这东西就像是顽皮的孩子,你到处找它时它总是东躲xz,但你没找它时,它又会顽皮地出现在你的眼前。

    秦克忽然想这道题的第四种解法,用的是差分法,能使得答案变得非常简洁,但要用到拉格朗日中值定理和偏导数理论,这些都是大学数学的知识层面了,超出了高中生的范围。

    按照imo的规则,你只能用高中及以下的数学知识来解题,否则不得分。如果你硬要用大学的知识定理来解题,也不是完全不可以,前提是你先用高中的知识,完成定理的推导,才能引用出来。

    让秦克先推导拉格朗日中值定理和偏导数的相关知识点,当然也不难做到,但要写很长的推导过程,那这第四种解法的意义就不大了,毕竟秦克想到这种解法,只是因为它“简洁”。

    那能不能运用大学数学的思维模式,采用高中的知识点,来写出最简洁的解法?

    这个灵感像是电火花一样略过秦克的大脑,他缓缓合上眼,努力地捕捉着这一丝丝的灵感。

    对于,为什么不试试呢?

 >>>>完整章节全文在线阅读 <<<<

本文来源:https://www.aiyyzx.com/51290.html

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,请发送邮件至 2018950194@qq.com 举报,一经查实,本站将立刻删除。

    相关文章
    最新文章